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Profiling of insulin-resistant kidney models
and human biopsies reveals common and
cell-type-specific mechanisms underpinning
Diabetic Kidney Disease
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Diabetic kidney disease (DKD) is the leading cause of end stage kidney failure
worldwide, of which cellular insulin resistance is amajor driver. Here, we study
key human kidney cell types implicated in DKD (podocytes, glomerular
endothelial, mesangial and proximal tubular cells) in insulin sensitive and
resistant conditions, and perform simultaneous transcriptomics and pro-
teomics for integrated analysis. Our data is further compared with bulk- and
single-cell transcriptomic kidney biopsy data from early- and advanced-stage
DKDpatient cohorts.We identify several consistent changes (individual genes,
proteins, andmolecular pathways) occurring across all insulin-resistant kidney
cell types, together with cell-line-specific changes occurring in response to
insulin resistance, which are replicated in DKD biopsies. This study provides a
rich data resource to direct future studies in elucidating underlying kidney
signalling pathways and potential therapeutic targets in DKD.

Diabetic kidney disease (DKD) is the leading cause of end-stage
kidney failure worldwide, occurring in up to 50% of individuals
with diabetes1. Furthermore, the excess cardiovascular and all-
cause mortality observed in individuals with diabetes is almost
exclusively restricted to those with DKD2,3. Despite its prevalence,
the molecular mechanisms underlying DKD development remain

incompletely understood. Both glomerular and proximal tubular
damage are hallmarks of DKD development and progression4,
thus, understanding the cellular and molecular changes occurring
in both the glomerulus and proximal tubule is key to under-
standing the mechanisms underlying DKD, identifying therapeutic
targets and biomarker candidates.
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Insulin resistance is one of the strongest metabolic features of
DKD, in both type 1 and type 2 diabetes5–8. The re-classification of
diabetic patients into subclusters (based on six variables, including
systemic insulin resistance) has emphasised this relationship, high-
lighting that cellular insulin-resistant individuals at initial presentation
have the highest risk of developing DKD5 and indicating that kidney
disease occurs secondary to insulin resistance9.

Insulin can signal to multiple kidney cell types, including glo-
merular cells10–12 (podocytes (Pods), mesangial cells (MCs), glomerular
endothelial cells (GECs)) and proximal tubular cells13–15 (PTCs). Con-
sequently, any disruption to insulin signalling in these cells could
potentially have important implications for kidney function in the early
and later stages of DKD. Several studies have shown that a loss of
intrinsic insulin signalling responses in kidney cells occurs in
diabetes11,16–18. Furthermore, reduced cellular insulin signalling con-
tributes to kidney injury10,19 and can disrupt whole-body glucose
homoeostasis13.

We, therefore, aimed to further explore the changes occurring in
kidney cells in response to a diabetic, insulin-resistant environment to
highlight key pathways and processes linked to DKD pathogenesis. We
performed comprehensive transcriptome and proteome analysis on
human insulin-sensitive and insulin-resistant Pods, GECs, MCs, and
PTCs to determine the molecular changes occurring in these condi-
tions and aid our understanding of disease mechanisms. The use of in
vitro cell lines as our model system allowed us to isolate RNA and
protein simultaneously from the samepopulation of cells, allowing the
direct comparison of transcriptomic and proteomic alterations and
performing functional studies to validate the results of gene set
enrichment and pathway analysis.

We further explored our findings in kidney biopsies from human
DKD cohorts, highlighting key gene expression and pathway changes
for follow-up and demonstrating the utility of these cell models for
future mechanistic studies of kidney cell dysfunction in DKD.

Results
Exposure to an in vitro diabetic environment causes insulin
resistance in human kidney cells
An overview of our experimental design is presented in Fig. 1a. Pre-
viously characterised conditionally immortalised human kidney
Pods20, GECs21, and MCs22, together with PTCs23, were used to model
insulin sensitivity and insulin resistance. Consistent insulin sensitivity
was achieved with stable insulin receptor (IR) over-expression, as
prolonged culture of kidney cells in vitro can promote IR
degradation17. Insulin resistancewas inducedby exposing cell lines to a
‘diabetic milieu’ (‘DM’) consisting of TNFα, IL-6, high glucose, and high
insulin as previously described17,24.

Initial characterisation of cellular insulin sensitivity demonstrated
efficient expression of the IR in transduced cells and increased phos-
phorylation of IRβ (Tyr1150/1151) and Akt (S473) following insulin-
stimulation of IR-expressing cells, which was lost in insulin-resistant
conditions (Fig. 1b, Supplementary Fig. 1), as previously shown in
Pods17. Interestingly, while IR protein levels were reduced in “diabetic”
Pods17, MCs and PTCs, this did not occur in GECs (Fig. 1b). Insulin-
stimulated glucose uptake was also observed in IR-transduced GECs,
Pods17 and PTCs and lost following exposure to the diabetic, insulin
resistant environment (Fig. 1c–f). Insulin stimulation did not induce an
increase in cellular glucose uptake inMCs (Fig. 1e) and IR transduction
alone had no significant effect on basal glucose uptake in our cell
models (Supplementary Fig. 1m–p).

Overviewof the transcriptomeandproteomechangesoccurring
in insulin-resistant human kidney cells
To further explore the changes occurring in insulin-resistant kidney
cells, the cellular proteome and transcriptome were studied simulta-
neously in each of the four kidney cell types, using tandem mass

tagged (TMT)-based mass spectrometry and RNA sequencing. 6227
proteins and 18,359 transcripts were detected across all the cell types
and conditions studied in the five independent experimental repeats.
Principal component analysis (PCA) and heatmaps of the sample-to-
sample distances performed on both the transcriptome and proteome
(Fig. 2a, Supplementary Fig. 2a–c) demonstrated a grouping of sam-
ples primarily by cell type. The variation between insulin-sensitive and
insulin-resistant cells was evident in PCAs performed within the indi-
vidual cell populations (Supplementary Fig. 2d, e).NPHS2, PECAM, EBF1
andRGNwere examples of cell-specific genes thatwere solelydetected
in Pods, GEC, MCs and PTCs, respectively (Supplementary Fig. 3).

To identify the proteins and transcripts significantly regulated in
an insulin-resistant environment, we initially performed a differential
expression (DE) analysis, comparing insulin-resistant to insulin-
sensitive cells. This indicated that, with the exception of GEC, there
were more significantly regulated (false discovery rate [FDR]-adjusted
p <0.05) molecules in the IR-expressing cells exposed to an insulin-
resistant environment vs wild-type cell lines (i.e., our highly insulin-
sensitive vs insulin-resistant comparison) (Fig. 2b–e, Supplemen-
tary Fig. 4).

IR-expressing Pods and PTCs displayed the highest number of
significantly regulated transcripts (1879 in Pods/1544 in PTCs) and
proteins (291 in Pods/122 in PTCs) in response to insulin resistance
(Fig. 2b–e). 79 DE transcripts/22 DE proteins and 579 DE transcripts/45
DE proteins were detected in insulin-resistant GEC and MCs, respec-
tively. Examples of genes and proteins highly regulated in response to
insulin resistance are labelled in Fig. 2c, d.

Integrated analysis of the proteome and transcriptome highlights
genes and proteins that are consistently regulated across insulin-
resistant kidney cells and in humanDKD. To identify gene signatures
that were consistently regulated across all insulin-resistant cells stu-
died, we next performed integrated analyses of the proteome and
transcriptome. We first examined the correlation between changes at
the transcript and protein level for all protein-coding genes, where we
had information on both transcript and protein abundance. Overall,
there was a good correlation between regulated proteins and tran-
scripts (Log2FC values) and a stronger correlation in the more insulin-
sensitive IR-expressing cells (r =0.438–0.606, Fig. 3a, Supplementary
Fig. 5), which were subsequently focused on. This also allowed us to
highlight examples of genes thatwere consistently regulated across all
four cell types, at both the transcript and protein level, in response to
insulin resistance (e.g., SERPINB4, Fig. 3a).

To capture additional changes in transcripts and proteins that
were driven by insulin resistance, we further used a multivariate
model; consensus orthogonal projections to latent structures dis-
criminant analysis (OPLS-DA) (Supplementary Fig. 6), integrating both
transcriptomic and proteomic data. The “Top 40” transcripts and
proteins with evidence of consistent regulation across all insulin-
resistant cell types (with variable importance in projection [VIP] > 1 and
FDR <0.1 in at least 3 comparisons) were selected for further evalua-
tion (Fig. 3b). Additional details of these genes (including known
functions) can be found in Supplementary Data 1. To investigate
whether there were likely to be any shared transcription factors that
could be driving these conserved gene expression changes, an over-
representation analysis against the TRANSFAC database of eukaryotic
transcription factors was performed. This suggested that these 40
commonly regulated genes were enriched for SRF, UBP1, PITX2 and
MYB transcription factor binding sites (Supplementary Data 2).

Evaluation of prioritised genes in biopsies from human DKD. We
next used transcriptomics data fromhumankidneybiopsies to explore
the regulation of these genes in early- or advanced-stage DKD and
found that six of our “insulin-resistance-associated transcripts” were
consistently up-regulated in both the glomerular and tubular regions
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of early and/or advanced human DKD (Fig. 3c); C3 (encoding com-
plement component 3), CXCL1 (encoding Chemokine (C-X-C motif)
ligand 1), CTSS (encoding Cathepsin S), NRBF2 (encoding Nuclear
Receptor-binding factor 2), PFKFB3 (encoding 6-phosphfructo-2-
kinase/fructose-2, 6-biphosphatase 3) and TFPI2 (encoding tissue fac-
tor pathway inhibitor 2). Using longitudinal clinical information avail-
able from the early-stage type 2 diabetes cohort25, we also observed
significant correlations between the expression of someof these genes
with kidney-associated phenotypes: C3 (increased expression asso-
ciated with faster rate of GFR decline i.e., ‘slope’), CTSS (higher glo-
merular expression associated with higher albuminuria at time of
biopsy and faster GFR decline) and NRBF2 (higher expression asso-
ciated with higher measured GFR at time of biopsy in individuals with

type-2 diabetes and early-stage DKD and subsequent faster rate of GFR
decline) (Fig. 3d). Of note, NRBF2 expression was also negatively cor-
related with GFR in late-stage DKD (Supplementary Fig 7), which may
suggest that the modest positive correlations observed in early-stage
type-2 DKD reflect hyperfiltration in those individuals (Supplementary
Data 3; mean GFR was 145ml/min in this group).

NRBF2 loss is detrimental in all kidney cell types. Given that NRBF2
has no prior links to kidney function or insulin resistance, we next
investigated the role of NRBF2 in kidney cell lines. In all cell types
studied (Pod, GECs, MCs and PTCs), NRBF2 knock-down (Supplemen-
tary Fig. 8a) resulted indramaticmorphological differences in each cell
type, including apparent vacuolisation (Fig. 4a) and a significant loss of

Fig. 1 | Overview of experimental pipeline and characterisation of cell models.
a Schematic representation of the experimental pipeline. Conditionally immorta-
lised human glomerular endothelial cells (GECs), podocytes (Pods),mesangial cells
(MCs) and proximal tubular cells (PTCs) were studied in vitro in a basal and insulin-
resistant environment (consisting of 1 ng/ml TNFα, 1 ng/ml IL-6, 25mMglucose and
100nmol/l insulin). Insulin-sensitive cell lines were established via stable over-
expression of the human insulin receptor (IR). The cellular transcriptome and
proteome were studied simultaneously using RNA sequencing and tandem-mass-
taggedmass spectrometry (n = 5 biological repeats per cell line and condition) and
integrated transcriptome and proteome data were analysed using univariate and
multivariate statistical models and gene set enrichment analysis (GSEA). Further
targeted analysis and validation were performed using single-cell and bulk

transcriptomics data from human DKD biopsies. Figure partly created in BioR-
ender. Lay, A. (2022) BioRender.com/x18l854 and BioRender. Lay, A. (2024) BioR-
ender.com/m22n059. b Western blotting of total protein lysates demonstrated
suppression of insulin-stimulated (15-min, 10 or 100 nmol/L) IR and Akt phos-
phorylation in all cell lines exposed to diabetic, insulin resistant,milieu (‘DM’). GECs
displayed no evidence of IR downregulation (representative of n = 4 biological
replicates). c–f Percentage increase in cellular uptake of [3H]2-deoxy-D-glucose in
insulin-stimulated (15-min, 100nmol/L) GECs (n = 6), Pods (n = 3), MCs (n = 4) and
PTCs (n = 5) [all biological repeats] vs. unstimulated cells, with and without expo-
sure to a diabetic, insulin resistant,milieu (‘DM’), unpaired two-tailed t-test, data are
presented as mean values ± SEM.
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GECs, MCs and PTCs within 96 h (Fig. 4b). In podocytes NRBF2 knock-
down resulted in fewer but larger podocytes (opposed to podocyte
loss) (Fig. 4a, c). In contrast, NRBF2 overexpressing podocytes (Sup-
plementary Fig. 8b) were protected against actin cytoskeletal changes
following exposure to an insulin-resistant environment (Fig. 4d, e).
Collectively, these results indicate that altered NRBF2 expression in
Pods, GECs, MCs and PTCs has important functional consequences,
which differ between kidney cell types.

Enhanced inflammatory-response, ER-stress and glycoprotein
metabolism are dysregulated pathways in all insulin-resistant
kidney cell types
To provide further biological context to the changes occurring in
insulin-resistant kidney cells, we performed a comprehensive gene set
enrichment analysis (GSEA)26, integrating data from both the tran-
scriptome and the proteome. GO terms that were significantly enri-
ched in at least one cell type at both RNA and protein level were

Fig. 2 | Transcriptome and proteome changes in insulin-resistant kidney
cell lines. RNA and protein were simultaneously isolated from podocytes (Pods),
glomerular endothelial cells (GECs), mesangial cells (MCs) and proximal tubular
cells (PTCs) under basal and insulin-resistant conditions, with and without addi-
tional IR-transduction (n = 5 biological repeats/condition). a Principal component
analysis (PCA) of >18,000 transcripts identified by RNAseq and >6000 proteins,
detected across all cell lines and conditions studied, demonstrating the primary
clustering of samples by cell type. b The number of differentially expressed (DE)
transcripts and DE proteins (FDR <0.05) within each cell type (both stable insulin

receptor-expressing and non-insulin receptor transfected cells) in diabetic (insulin-
resistant) vs. basal (insulin-sensitive) conditions. c Transcripts and d proteins dif-
ferentially expressed IR-transduced cell lines in diabetic (insulin-resistant) vs. basal
(insulin-sensitive) conditions, with examples of significantly regulated molecules
highlighted (FDR <0.05); differential expression analyses of full transcriptomics
and proteomics datasets are available in the ‘Source data’ file. e Venn diagrams
demonstrating the overlap of DE (FDR <0.05, Log2FC<0 or Log2FC>0) tran-
scripts or proteins between individual cell types, (analysis on IR-expressing
cells alone).
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hierarchically clustered with other similar GO terms (based on the GO
structure and semantic similarity), using GOSemSim27 (Supplementary
Figs. 9–11). This highlighted clusters of consistently enriched pathways
across all insulin-resistant cell lines, including the immune/inflamma-
tory response (Fig. 5a, Supplementary Data 4), ER stress/the unfolded
protein response (UPR) (Fig. 5d, Supplementary Data 5) and glyco-
protein metabolism/processing (Fig. 5g, Supplementary Data 6), at
both the transcript and protein level.

For eachof thesepathway clusters,we used the “core enrichment”
transcripts/proteins from the GSEA to prioritise a subset of genes that

were driving the enrichment in all insulin-resistant kidney cell types at
both the transcript and protein levels (as displayed in Fig. 5a, d and g).
To evaluate whether consistent pathway enrichment was occurring in
human kidneys, we calculated Z-scores for the expression values for
these prioritised pathway genes in biopsies from early- or advanced-
stage DKD and healthy living donors.

This revealed a consistent increase in pathways related to the
inflammatory/immune response (Fig. 5b, c), ER stress (Fig. 5e, f), and
glycoprotein processing (Fig. 5h, i), in human glomerular and/or tub-
ular compartments of either early- or advanced-stage DKD, at the

Fig. 3 | Integrated analysis of the proteome and transcriptome highlights
consistently regulated genes and proteins in insulin-resistant kidney cells and
human DKD. a Pearson correlation between transcript- and protein-level regula-
tion in insulin-resistant vs. basal conditions, within each IR-transduced cell line
(n = 5 biological repeats/condition). Examples of genes consistently regulated at
the transcript and protein level are highlighted; differential expression analyses of
transcriptomics and proteomics datasets from IR-transduced cells are available in
the ‘Source data’ file. b Hierarchical clustering and heatmap of combined DE (Log2
FC) and consensus-OPLS analysis to highlight the ‘Top 40’ consistently regulated
proteins and transcripts across all cell lines in insulin resistant vs. basal conditions
(selected if VIP > 1 and FDR<0.1 in at least three comparisons), data are available in

‘Source data’ file. c Heat map highlighting genes with evidence of consistent reg-
ulation (Log2 fold change) in human cell lines and either early- (American Indian
type 2 diabetes cohort, glomerular ‘Glom’, n = 69 and tubular ‘Tubule’, n = 47) or
late-stage DKD (ERCB cohort, ‘Glom’ n = 12 and ‘Tubule’ n = 17) vs. Living donors
(n = 18), *FDR <0.1, **FDR<0.01, differential expression and significance estimated
using limma, data available in ‘Source data’ file. d Correlation (Spearman R)
between glomerular (‘Glom’, n = 69) and tubular (‘Tubule’, n = 47) gene expression
(Log2 mRNA intensity) and urinary albumin/creatinine ratio (ACR), glomerular fil-
tration rate (GFR), estimated GFR decline (slope) and age in the American Indian
early type-2 diabetes cohort, *p <0.05.
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transcript level. Of note, the increases observed in the human tubular
fractions were predominantly observed in individuals with advanced
DKD (Fig. 5c, f, i), whilst glomerular changes were observed in both
early and advanced DKD (Fig. 5b, e, h). Other examples of consistently
regulated pathways identified from our insulin-resistant cell models
included an increase in iron transport and a reduction in HIPPO sig-
nalling, cellular response to ammonium ion and regulation of pino-
cytosis (Supplementary Fig. 12).

Insulin resistance promotes cell-type-specific changes to the
proteome and the transcriptome in the kidney
To understand the heterogeneity of kidney cell responses to insulin
resistance, we additionally investigated the transcripts (Supplemen-
tary Fig. 13a) and proteins (Supplementary Fig. 13b) that were regu-
lated in a cell-type-specific manner between our cell lines.

The top cell-line-specific transcript and protein changes (selected
based on both fold-change and FDR values) are presented in Fig. 6a, b
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and include several long-non-coding RNAs. Notable KEGG pathways
that were enriched in a cell-type-specificmanner in response to insulin
resistance included RIG-I-like-receptor signalling in Pods; glycosami-
noglycan degradation in GECs; ECM-receptor interaction, DNA repli-
cation and the cell cycle in MCs; and Complement/coagulation
cascades and a reduction of tight junctions in PTCs (Supplementary
Fig. 13c). Although limited to genes wherewe had information on both
transcript and protein abundance, we also identified several protein-
coding genes with evidence of cell-type-specific regulation at both the
transcript and protein level in response to insulin resistance (Fig. 6c).

Evaluation of prioritised genes in human DKD using single-cell
sequencing data. Cell-line-specific responses to insulin resistance
were further evaluated in human kidney biopsy single-cell sequencing
data. We first mapped the single-cell profiles of our cell-line-specific
insulin-resistance genes, which indicated that a subset displayed cell-
type-specific expression patterns between Pod, ECs, MCs and PTCs
(i.e., our cell types of interest) in vivo, in healthy human kidney (Sup-
plementary Fig. 14a, b). We further prioritised the genes that were
displaying evidence of consistent cell-type-specific regulation in
human DKD, aligning our in vitro cell type data with single-cell
sequencing data from an American Indian type 2 diabetes cohort28

(early DKD) and the kidney precision medicine project (KPMP)29

(advanced DKD) (Supplementary Figs. 15 and 16).
This highlighted genes that were also consistently, specifically,

regulated in corresponding single-cell types from kidney biopsies as
well as our in vitro studies. These included TCF21, encoding ‘Tran-
scription factor 21’ and RASL11B encoding ‘Ras-like protein family
member 11’ in Pods (Fig. 6d, h); MGP, encoding ‘Matrix gla Protein’ in
GECs (Fig. 6e, i); TWF2, encoding ‘Twinfilin-2’ in MCs (Fig. 6f, j); and
BDH2, encoding ‘3-hydroxybutarate dehydrogenase 2’, S100A1,
encoding ‘S100 calcium-binding protein A1’ and PIGR, encoding
‘Polymeric immunoglobulin receptor’ in PTCs (Fig. 6g, k), in either
dataset. This provides further evidence that cell-specific responses to
insulin resistance occur in humanDKD and highlights additional genes
for mechanistic follow-up studies.

Insulin-resistant kidney cells have differential, protein-level
regulation of mitochondrial dynamics
Further investigation of the molecular pathways that were differen-
tially regulated between our 4 insulin-resistant kidney cell types indi-
cated a dramatic cell-type-specific disruption to pathways governing
mitochondrial dynamics, which was uniquely observed at the protein
level (Fig. 7a); highlighting an important cell-type-specific response to
insulin resistance, not captured by transcriptomics data alone.

We observed a significant reduction in mitochondrial bioener-
getic processes (‘oxidative phosphorylation’, OXPHOS, and the ‘elec-
tron transport chain’, ETC), specifically at the protein level in insulin-
resistant Pods, MCs and PTCs, alongside a reduction in pathways
regulating mitochondrial gene expression (Fig. 7a). In insulin resistant
GECs, however, there was a significant positive enrichment of proteins
involved in mitochondrial transcription and translation.

The core proteins driving these enrichment results included
proteins involved in mitochondrial gene expression, mitochon-
drial protein assembly, the TCA cycle, as well as several subunits of
complex I of the respiratory chain (Supplementary Data 7). Overall,
651 mitochondrial proteins were detected across all cell types
(annotated using GOCC), of which 98 were downregulated in
insulin-resistant Pods (FDR < 0.1) (Fig. 7b). Many of these proteins
were also downregulated in MCs (18 proteins, FDR < 0.1) and PTCs
(31 proteins, FDR < 0.1).

Interestingly, of the 27 complex I subunits that we detected at
both the transcript and protein level, 18 (66.7%) were significantly
(FDR <0.1) reduced in Pods and 3 in PTCs. Furthermore, 5 members of
complex IV proteins were significantly reduced in podocytes (Fig. 7c,
FDR <0.1). Several were also significantly regulated in PTCs at the
nominal p value threshold (0.05) but did not pass the multiple cor-
rection threshold (Supplementary Fig. 17a). Protein subunits of ETC
complex IV were also highly downregulated in insulin-resistant Pods
(Fig. 7c, Supplementary Fig. 17a). In contrast, we found no evidence for
the regulation of any respiratory complexes in GECs (Fig. 7c, Supple-
mentary Fig. 17a). Validation experiments using qPCR and western
blotting demonstrated that, in all the cell types, there was no sig-
nificant difference in the mRNA levels of any of the OXPHOS subunits
studied in insulin resistant vs. insulin sensitive conditions (Fig. 7g, i,
Supplementary Fig. 17b). In contrast, we found a reduction in protein
expression of Complex IV subunits (CoxII) in pods, MC and PTC
(Fig. 7h, Supplementary Fig. 17c), as well as Complex I (NDUFB8) in
MCs (Fig. 7j, Supplementary Fig. 17c). InGECs, we found no evidence of
regulation of any of the protein complex subunits studied (Fig. 7h, j,
Supplementary Fig. 17c).

The discordance between transcript and protein regulation was
also evident for many of the enzymes involved in the TCA cycle, which
excludingAconitase 1 (ACO1),were again largely down-regulated at the
protein level in Pods, MCs and PTCs (Fig. 7d, Supplementary Fig. 17d).
Interestingly, a post-transcriptional down-regulation of proteins
involved in glycolysis was not observed in any of the insulin resistant
cell types (Fig. 7e, Supplementary Fig. 17e), potentially indicating that
insulin-resistance could promote a “glycolytic switch” in Pods, MCs
and PTCs.

Mitochondrial bioenergetics are selectively impaired in insulin-
resistant kidney cells
To further assess whether insulin resistance resulted in functional cell-
line-specific disruption of mitochondria (particularly mitochondrial
bioenergetics), we performed live cell analysis using a ‘Seahorse XF
Analyzer’. Oxygen consumption rate (OCR) and Extracellular acid-
ification rate (ECAR)were continuouslymonitored in basal and insulin-
resistant cells, sequentially incubated with oligomycin, FCCP and
antimycin A plus rotenone (Fig. 8a). Results of these experiments
demonstrated that insulin resistant Pods, MCs and PTCs had reduced
mitochondrial ATP production (Fig. 8b), whereas ATP production via
glycolysis was largely maintained or, in the case of Pods and PTCs,
enhanced (Fig. 8c). However, glycolysis was not able to fully

Fig. 4 | Effect of NRBF2 knockdown and overexpression in cultured
kidney cells. a Brightfield images of podocytes (Pod), glomerular endothelial cells
(GEC), mesangial cells (MC) and proximal tubular cells (PTC) showing changes in
cell morphology 4 days after shRNA NRBF2 knockdown compared with scrambled
shRNA controls. NRBF2 knockdown induces cell vacuolisation (enlarged images)
alongwith podocyte hypertrophy and lossofGEC,MCandPTC. Scalebar = 100μm.
b Bar chart showing reduced cell number 4 days after shRNA NRBF2 knockdown
compared with scrambled controls. Unpaired two-tailed t-test, cells were counted
in three fields of view (n = 3 biological repeats), data are presented as mean
values ± SEM. c Bar chart showing increased cell area in shRNA NRBF2 knockdown
podocytes comparedwith controls. Areawasmeasured in 10 cells in each of 3fields

of view. Unpaired two-tailed t-test, (n = 3 biological repeats), data are presented as
mean values ± SEM. d Images of phalloidin-stained podocytes overexpressing
NRBF2 (pod NRBF2 OE) and wild-type controls cultured for 10 days in basal or
diabetic media (‘DM’). Diabetic media-induced changes in cell morphology and F-
actin distribution (top right) that are attenuated byNRBF2 overexpression (bottom
right). e Quantification of F-actin stress fibres, indicating significant F-actin rear-
rangement in wild-type podocytes exposed to Diabetic media ‘DM’ and no differ-
ence in F-actin distribution in NRBF2-overexpressing podocytes, one-way ANOVA
with Tukey’smultiple comparisons test (n = 8 technical repeats), data are presented
as mean values ± SEM.
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compensate for the loss of mitochondrial respiration, as we observed
an overall reduction in ATP production rate in insulin resistant Pods,
MCs and PTCs (Supplementary Fig. 18a).

In insulin-resistant Pods, MCs and PTCs, maximal respiration and
mitochondrial spare capacity (or ‘mitochondrial reserve’, reflecting
healthy mitochondria30) were also reduced (Fig. 8d, e, Supplementary
Fig. 18b), aligning with the reduction in mitochondrial proteins
detected in these cells. No significant changes to any of the cellular

bioenergetic parameters studied were apparent in insulin-resistant
GECs (Fig. 8).

Collectively, these results demonstrate that insulin resistance is
associated with a cell-line-specific regulation of mitochondrial path-
ways. Given the wide-ranging effects of mitochondria on cell function
and cell signalling (beyond bioenergetics), further comprehensive
studies of the effects of insulin resistance onmitochondrial functional
parameters are warranted.
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Discussion
Insulin resistance has been highlighted as a keymetabolic determinant
of DKD, in both type 17,31 and type 28 diabetes. Furthermore, it is now
clear that insulin resistance drives kidney disease before, during, and
after diabetes onset, across ancestries5,9,32,33. In this study, wemodelled
insulin sensitivity and insulin resistance in human kidney cells known
to be affected early in DKD progression, compared with human early-
and advanced-stage DKDbiopsy data, and provided anoverview of the
consistent and cell-type-specific molecular changes associated with
insulin resistance. Although the use of in vitro models cannot fully
represent the complex changes observed in vivo (and, indeed, we
focus on insulin resistance as an important molecular driver of DKD),
we demonstrate the value of these models for the manipulation of
target genes and pathways of interest, to provide further mechanistic
insights.

Our integrated analysis of the proteome and the transcriptome
identified a set of 40 transcripts and proteins that were commonly
regulated in all insulin-resistant kidney cells studied. Targeted analyses
of human transcriptome data from micro-dissected glomeruli and
tubules demonstrated a consistent (up)regulation in individuals with
DKD, of genes with both known roles in the kidney (CTSS34, C335–37,
CXCL138, PFKFB339,40, TFPI241) and with no prior direct links to kidney
function (NRBF2); prioritising important molecular targets for further
detailed studies of DKD. As a ‘proof-of-concept’ to show the value of
cell models in both informing targeted analysis of human population
data and for follow-up studies, we subsequently investigated the
mechanistic role of NRBF2 in our models. Our in vitro studies
demonstrated thatNRBF2 knock-downhaddetrimental effects inPods,
GECs, MCs and PTCs and, in contrast, indicated that increased NRBF2
expression in podocytes protected against actin remodelling induced
by insulin resistance. Collectively, these results point towards an
important functional role of NRBF2 in the kidney and indicate the
importance of controlled NRBF2 expression levels in kidney cells.
These results also suggest the functional consequences of aberrant
NRBF2 expression likely differ between cell types. Although NRBF2 has
not previously been studied in the context of DKD, this protein is
emerging as an important regulator ofmTOR-mediated autophagy42,43.
This role in regulating autophagy is plausibly themechanism by which
NRBF2 exerts its effects on kidney cells and is an important area of
future investigation.

Regarding genes with prior evidence for a role in kidney function,
we found that increased kidneyC3 andCTSS expressionwas associated
with eGFR decline and/or albuminuria. Of note, systemic inhibition of
Cathepsin S protein (CTSS) has previously been shown to protect
against albuminuria and glomerulosclerosis in diabetes34. Taken with
our results, this suggests a local upregulation of CTSS expression
(whichmaybedriven by insulin resistance) occurs in the glomeruli and
tubules in DKD which may contribute towards kidney damage. Like-
wise, blockade of the receptor for C3a (a cleavage product of C3 in the

activation of both the classical and alternative complement pathways),
has been found to have protective effects in animalmodels of DKD36,37.
Our results provide further support for the involvement of C3 (and,
therefore, the complement system) in DKD and evidence for local
production and regulation of C3 by resident kidney cells.

Our comprehensive gene set enrichment analysis, integrating
protein and transcript level data, also highlighted several common
biological pathways that were dysregulated across all insulin-resistant
kidney cell types studied and were similarly regulated in kidney
biopsies from individuals with DKD. These included ER stress and
inflammatory/immune pathways, in addition to glycoprotein
processing44. Although it is unsurprising that glycoprotein synthesis is
dysregulated in insulin-resistant conditions, given that metabolic dis-
turbances can increase the complexity of glycan branching and altered
plasma N-glycosylation patterns are associated with DKD
progression45, the specific glycoprotein changes in the kidney in DKD,
and their functional consequences, are not fully characterised. Given
that the major roles for glycoproteins in the kidney include the for-
mation of the glomerular basement membrane (GBM)46, the glo-
merular endothelial glycocalyx47 and the podocyte slit diaphragm48,
comprehensive profiling of glycoprotein composition in kidney cells
in diabetes is clearly warranted. Our results here provide examples of
core glycoprotein-modifying proteins (including several enzymes)
that are upregulated in insulin-resistant kidney cells and in human
DKD; which may be targets to restore kidney glycoproteins in DKD.
Similarly, although both ER stress and inflammatory responses are
commonly linked to DKD pathogenesis49,50, our results provide
examples of genes and proteins that may be key in driving ER stress
and immune/inflammatory responses in insulin-resistant Pods, GEC,
MCs and PTCs, and in human DKD in both glomeruli and tubules. The
identification of cellular pathways that are commonly dysregulated in
multiple cell types involved in DKD pathogenesis also offers the
opportunity to identify processes that can be targeted bybroad-acting
pharmaceuticals.

In addition to the common genes and pathways dysregulated
across all insulin-resistant cell types, we also explored any cell-type
specific changes occurring in our in vitro models, which we further
evaluated using single-cell sequencing data from early- and advanced-
stage human DKD; thereby identifying important molecular changes
whichmay be targets for cell-type-specific therapeutic strategies51 and
the focus of future mechanistic work. This identified several cell-type-
specific changes in protein-coding genes, with potential mechanistic
roles in DKD (although, notably, the expression of these genes was not
necessarily found to be cell-type-specific). For example, Podocyte-
specific changes included a reduction in TCF21, which encodes a
transcription factor previously identified as crucial for podocyte
development and maintenance. Studies using animal models have
revealed that a podocyte-specific reduction in Tcf21 promotes both
Focal Segmental glomerulosclerosis (FSGS)-like disease and an

Fig. 5 | Insulin-resistant kidney cells are characterised by an increased inflam-
matory response, ER stress and glycoprotein metabolism pathways. a ‘Gene-
concept network’ displaying normalised enrichment scores (NES) for immune/
inflammatory response pathways enriched in at least one cell type at RNA and
protein level (p-value < 0.05, q-value < 0.1 either from DE or Consensus OPLS ana-
lysis) and Log2 Fold Change values of core enrichment inflammatory genes/pro-
teins, consistently regulated in each insulin resistant cell line. b, c Box plot
displaying average Z-scores of expression for core inflammatory/immune genes in
b human glomerular and c tubular bulk transcriptomics data from both early
(American Indian type-2 diabetes cohort, glomerular (‘Glom’), n = 69 and tubular
(‘Tubule’),n = 47) and advanced-stageDKD (ERCB cohort, ‘Glom’n = 12 and ‘Tubule’
n = 17) vs Living donors (n = 18). d ‘Gene-concept network’ displaying NES for ER
stress pathways enriched in at least one cell type at RNA and protein level (p-
value < 0.05, q-value < 0.1 from DE or Consensus OPLS analysis) and Log2 Fold
Change values of core enrichment ER stress genes/proteins, consistently regulated

in each insulin resistant cell line. e, f Box plots displaying average Z-scores of
expression for core ER stress genes in e human glomerular and f tubular bulk
transcriptomics data from both early (‘Glom’, n = 69 and ‘Tubule’, n = 47) and
advanced-stage DKD (‘Glom’ n = 12 and ‘Tubule’ n = 17) vs. Living donors (n = 18).
g ‘Gene-concept network’ displaying NES for glycoprotein biosynthesis/metabo-
lism pathways enriched in at least one cell type at RNA and protein level (p-
value < 0.05, q-value < 0.1 from DE or consensus OPLS analysis) and Log2 Fold
Change values of core enrichment glycoprotein biosynthesis/metabolism genes/
proteins, consistently regulated in each insulin resistant cell line. h, i Box plots
displaying average Z-scores of expression for core glycoprotein-related genes in
h human glomerular and i tubular bulk transcriptomics data from both early
(‘Glom’, n = 69 and ‘Tubule’, n = 47) and advanced-stage DKD (‘Glom’ n = 12 and
‘Tubule’ n = 17) vs. Living donors (n = 18). For b, c, e, f, h and i one-way
ANOVA shown.
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Fig. 6 | Cell-type-specific responses to insulin resistance and targeted analysis
of human kidney single cell sequencing data to identify replicated changes in
humanDKD. a and b Bar charts demonstrating the log2 fold-change values for
the top 10 selectively regulated a transcripts and b proteins in response to
insulin resistance, calculated from transcriptome and proteome data nor-
malised and analysed for each individual cell line separately *FDR < 0.1,
**FDR < 0.05, differential expression and significance estimated using limma,
with a global benjamini-hochberg correction, n = 5 biological replicates, per

cell type, data are presented as mean values ± SEM. c scatter plots demon-
strating the genes regulated in response to insulin resistance in a cell-type-
specific manner, consistently at the transcript and protein level. d–k single-
cell sequencing analysis of target genes in each cell-type cluster (dot plots
displaying the percentage of expressing cells and mean expression values) in
d–g an American Indian type-2 diabetes cohort with early-DKD (n = 44 early-
DKD vs. n = 18 LD) and h–k advanced DKD from KPMP (n = 10 advanced-DKD
vs. n = 18 living donor).
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exaggerated DKD-like phenotype52. Our results provide further evi-
dence that TCF21 regulation in podocytes may play an important role
in DKD pathogenesis. We also found a reduction of RASL11B in insulin-
resistant podocytes thatwaspresent inboth early- and advanced-stage
DKD kidney biopsies. This small GTPase has previously been shown to
be important in the accumulation of matrix in cartlidge53, but has not
been explored in the kidney. Its reduction in insulin resistance could

conceivably be a feedback response to limit matrix accumulation in
this setting. PTC-specific changes were also observed for genes with
prior links to PTC damage; for example, PIGR, encoding the polymeric
immunoglobulin receptor, which has been shown to increase in PTCs
in a variety of kidney diseases, including DKD54; and those with no
known associations to PTC function, for example, BDH2, encoding the
enzyme 3-hydroxybutarate dehydrogenase 2, involved in fatty acid
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beta oxidation and epithelial cell differentiation; and S100A1, a mem-
ber of the S100 family of calcium binding proteins with an array of
downstream molecular functions. Of note, S100A1 has attracted par-
ticular interest as a therapeutic target for cardiovascular diseases
including heart failure55,56, as such, further studies investigating the
effects of this gene in PTCs are clearly justified. In MCs, we found a
significant reduction in TWF2, encoding the actin-regulating protein
Twinfilin-2 in both early- and advanced-stage DKD, the role and
implications of which remain to be explored. GECs displayed high
basal expression of MGP, a vitamin K-dependent protein that is a
potent inhibitor of vascular calcification57. Although MGP was also
detected in Pods and MCs in our human biopsy data, the reduction in
MGP expression in DKD was uniquely observed in GECs in both early
and, more profoundly, advanced-stage DKD biopsy samples. This loss
ofMGP in GECs in DKD could contribute towards calcification. Further
examples of cell-type-specific responses to insulin resistance included
the differential expression of multiple long-non-coding RNAs
(lncRNAs), which were among the top cell-line-specific transcriptional
changes.

Our pathway analysis demonstrated that mitochondrial dynamics
and bioenergetics were selectively impaired between different insulin-
resistant kidney cell types and that this was uniquely observed at the
protein level. These results highlight the importance of post-
transcriptional regulation of mitochondrial metabolic proteins (for
example, impaired translation and/or increased protein breakdown,
including mitophagy), indicating an important mechanism of bioe-
nergetic regulation that may not be accurately captured in (or inter-
preted from) transcriptomics data alone. Indeed, post-transcriptional
regulation of mitochondrial bioenergetic function has been recently
described in type-2 diabetic islets58. Although there is a well-
acknowledged association between insulin resistance and mitochon-
drial dysfunction59 and the importance of disturbances to mitochon-
drial function in the pathogenesis of kidney disease (including
mitochondrial degradation in glomeruli and tubules in CKD60) is
increasingly appreciated61–63, the role of insulin resistance in promot-
ing mitochondrial dysfunction in the kidney and the comparison of
mitochondrial adaptations in insulin resistance between kidney cell
types is lesswell-defined. In other tissues, cellular insulin signalling has
been shown to directly regulatemitochondrialmetabolism64 and a loss
of insulin signalling (via IR or combined IR/IGF-IR) in muscle can
reducemitochondrial respiration via complex I65, although this is likely
a cell-type- and context-specific effect. Previous studies inhibiting IR/
IGF-IR signalling in podocytes have, in fact, shown protective effects
against severe mitochondrial dysfunction caused by the deletion of
Phb264.

Our results indicate that insulin resistance in Pods, MCs and PTCs
is associated with a reduction of several mitochondrial proteins
(including multiple subunits of the ETC protein complexes) and a
subsequent shift to glycolysis being the predominant pathway by
which cellular ATP is produced. However, in each case, glycolysis was
not sufficient to compensate for reduced mitochondrial ATP

production and an overall suppression of ATP production was
observed in insulin-resistant Pods, MCs and PTCs. A generalised
mitochondrial dysfunction was also clearly observed in insulin-
resistant Pods, MCs, and PTCs indicated by reduced spare respira-
tory capacity and maximal respiration. This likely reflects the sub-
stantial reduction in ETC protein subunits (particularly in podocytes)
in combination with a reduction of TCA proteins, including the pyr-
uvate dehydrogenase subunits PDHA1 and PHDB (thereby limiting
pyruvate metabolism). Indeed, loss of pyruvate dehydrogenase activ-
ity is sufficient to reduce spare capacity30,66. Since ETC and TCA pro-
teins reside in the mitochondria, this result may also reflect
generalised reduction in functional mitochondria in insulin-resistant
Pods, MCs and PTCs. In contrast, insulin-resistant GECs displayed an
enrichment for proteins involved in mitochondrial biogenesis and no
evidence of reduced mitochondrial bioenergetic function. This could
imply an effective removal (e.g., via mitophagy) and replacement (e.g.,
via increased mitochondrial biogenesis) of defective mitochondria in
these cells, which requires further investigation. Although, in general,
endothelial cells are regarded as having a comparatively low energy
demand67. Future in-depth, cell-type-specific pathway enrichment and
thorough integration with single-cell multi-omics data from human
cohorts (as well as comparison with results from other experimental
approaches) will no doubt identify additional cell-type-specific
responses to insulin resistance in DKD; thereby highlighting future
opportunities for cell-type-specific therapeutic targeting (e.g., for
example, with AAV-delivered gene therapy51).

We recognise there are constraints to this study. This work aimed
to explore the molecular changes related to insulin resistance, in kid-
ney cell types that are known tobe important in the early stages ofDKD
pathogenesis. We used established in vitro cell lines to model insulin
sensitivity and insulin resistance and provide a comprehensive over-
view of the molecular changes. Although there are well-recognised
limitations in the use of cell lines as model systems, such as losing
cellular markers over time and, of course, in vitro models cannot fully
capture the complex in vivo scenario, our dataset provides a proof-of-
principle for the use of these models to identify targets for focused
validation analysis in human population data and as a platform for
follow-up studies, to provide further mechanistic insight. Of note, we
also focus our model on insulin resistance as an important molecular
mediator of DKD and therefore, may not capture or represent
expression changes that are caused by other drivers of this complex
disease. Our validation in human DKD cohorts uses kidney single-cell
sequencing and bulk glomerular and tubular transcriptomics data
from early-stage and late-stage DKD. We were unable to confirm pro-
tein changes in our biopsy specimens. In our analysis of single-cell
sequencing data, we highlighted examples of genes that are regulated
in a cell-type-specific manner in human DKD, consistent with cell-line-
specific regulation in response to insulin resistance in vitro. However,
these example genes are not necessarily expressed in a cell-type-
specific manner, which will need to be considered in the design of any
future follow-up studies.While some of our analyses in human cohorts

Fig. 7 | Insulin-resistant kidney cells have differential, protein-level regulation
of mitochondrial dynamics. a Normalised enrichment scores (NES) for enriched
mitochondrial gene signatures in insulin-resistant cell lines, highlighting pre-
dominant regulation at the protein-level (*q <0.1, **q <0.05, ***q <0.01). b Number
of significantly up- or down-regulated (FDR<0.1)mitochondrial proteins (based on
having mitochondrial GOCC annotation) detected in our proteomics datasets.
cHeatmap of log2 Fold Change (insulin resistant vs. basal) for the respiratory chain
complex transcripts and proteins detected in all four cell types *FDR<0.1,
**FDR<0.05, ***FDR <0.01. d Heatmap of log2 Fold Change (insulin resistant vs
basal) for TCA cycle transcripts and proteins detected in all four cell types *FDR<
0.1, **FDR <0.05, ***FDR<0.01. eHeatmapof log2 FoldChange (insulin resistant vs.
basal) for glycolysis transcripts and proteins detected in all 4 cell types *FDR<0.1,

**FDR<0.05, ***FDR <0.01. f Schematic diagram of mitochondrial bioenergetic
processes likely dysregulated in Pods, MCs and PTCs based on proteomics data
(upregulated = red, downregulated = blue), created in BioRender. Sinton,M. (2023)
BioRender.com/s01v107. g qPCR results of MT-COXII mRNA (n = 5, each cell type
and condition, two-tailed t-test, data are presented as mean values ± SEM) and
h densitometry values for COX-II protein expression (n = 4 podocyte, n = 5 glo-
merular endothelial cells, n = 5 mesangial cells, n = 3 proximal tubular cells, two-
tailed t-test, data are presented as mean values ± SEM), i qPCR results of NDUFB8
mRNA (n = 5, each cell type and condition, two-tailed t-test) and j densitometry
values for NDUFB8 protein expression (n = 3 podocyte, n = 4 glomerular endothe-
lial cells, n = 4 mesangial cells, n = 3 proximal tubular cells, two-tailed t-test).
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Fig. 8 | Mitochondrial metabolism is differentially impaired in insulin-resistant
kidney cells. a Seahorse extracellular flux analysis of oxygen consumption rate
(OCR) in ‘Basal’ or ‘Insulin resistant’ podocytes, glomerular endothelial cells (GEC),
mesangial cells (MCs) and proximal tubular cells (PTCs) following injections of
oligomycin (1.5 µM), FCCP (1 µM) and antimycinA (0.5 µM)plus rotenone (0.5 µM) at
the indicated time points. b, c Percentage of ATP production attributed to
bmitochondrial respiration or c glycolysis in each cell line under ‘Basal’ or ‘Insulin
Resistant’ conditions in podocytes (‘Pod’, n = 6 ‘Basal’ vs. n = 7 ‘Insulin Resistant’),
glomerular endothelial cells (‘GEC’, n = 6 ‘Basal’ vs. n = 5 ‘Insulin Resistant’),
mesangial cells (‘MC’, n = 7 ‘Basal’ vs. n = 6 ‘Insulin Resistant’) and proximal tubular
cells (PTC, n = 4 ‘Basal’ vs. n = 4 ‘Insulin Resistant’) two-tailed t-test, data are pre-
sented asmean values ± SEM;dOCR values perminute, per 1000cells representing

maximal respiratory capacity (in ‘Insulin Resistant’ vs. ‘Basal’ conditions in Podo-
cytes (‘Pod’, n = 6 ‘Basal’ vs. n = 7 ‘Insulin Resistant’), glomerular endothelial cells
(‘GEC’, n = 6 ‘Basal’ vs. n = 5 ‘Insulin Resistant’), mesangial cells (‘MC’, n = 7 ‘Basal’ vs.
n = 6 ‘Insulin Resistant’) and proximal tubular cells (PTC, n = 4 ‘Basal’ vs. n = 4
‘InsulinResistant’) two-tailed t-test, data arepresented asmeanvalues ± SEM;eOCR
values per minute, per 1000 cells representing mitochondrial spare respiratory
capacity (in ‘Insulin Resistant’ vs. ‘Basal’ conditions in podocytes (‘Pod’, n = 6 ‘Basal’
vs. n = 7 ‘Insulin Resistant’), glomerular endothelial cells (‘GEC’, n = 6 ‘Basal’ vs. n = 5
‘Insulin Resistant’), mesangial cells (‘MC’, n = 7 ‘Basal’ vs. n = 6 ‘Insulin Resistant’)
andproximal tubular cells (PTC,n = 4 ‘Basal’ vs.n = 4 ‘InsulinResistant’) two-tailed t-
test, data are presented as mean values ± SEM.
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used information from different datasets (which may introduce var-
iation due to technical differences), batch-to-batch variation was
minimised through harmonisation of study protocols, including for
sample collection. Appropriate batch correction methods were also
applied68.

In summary, by providing a comprehensive overview of kidney
cell responses to insulin resistance, our results provide further
insights into the molecular changes underlying insulin-resistance-
driven DKD and highlight potential therapeutic targets for future
study. Our focused investigation of early and late-stage human
biopsy data confirmed consistent regulation of multiple “insulin-
resistance-associated genes” in human DKD, including C3, CXCL1,
CTSS, NRBF2, PFKFB3 and TFPI2. We provide further evidence that
kidney inflammation, ER stress and glycoprotein metabolism are
enhanced in DKD, whichmay be driven by cellular insulin resistance
and highlight a previously under-appreciated discordance in the
regulation of mitochondrial proteins vs. transcripts in the kidney.
Furthermore, our data provide an important resource for
researchers to investigate their molecules of interest and to assess
the utility of these cell models as molecular tools when designing
future mechanistic studies.

Methods
Ethics
For the samples analysed from the American Indian type-2 diabetes
cohort, each participant signed an informed consent document, and
the study was approved by the Institutional Review Board of the
National Institute of Diabetes and Digestive and Kidney Diseases
(NIDDK). Biopsy samples in ERCB were obtained from patients after
informed consent and with the approval of the local ethics
committees.

Cell culture and conditions
Conditionally immortalised human podocytes20 and mesangial cells22

were maintained in RPMI-1640 containing L-glutamine and NaHCO3,
supplemented with 10% or 20% FBS, respectively (Gibco). Con-
ditionally immortalised human glomerular endothelial cells21 were
maintained in endothelial cell growth medium-2, containing micro-
vascular SingleQuots Supplement Pack in 5% FBS (Lonza). Con-
ditionally immortalised human proximal tubular cells23 were
maintained in DMEM-HAM F-12 (Lonza) containing 36 ng/ml hydro-
cortisone (Sigma), 10 ng/ml EGF (Sigma) and 40 pg/ml tri-
iodothyronine (Sigma) and 10% FBS. To mimic a diabetic environ-
ment and induce cellular insulin resistance in vitro, human cells were
grown in the presence of 100 nmol/l insulin (Tocris, Bristol, UK),
25mmol/l glucose (Sigma), 1 ng/ml TNF-α and 1 ng/ml IL-6 (R&D sys-
tems, Abingdon, UK)17. Cells were studied after 10–12 days of differ-
entiation at 37 °C and were free of Mycoplasma infection. For insulin
stimulation experiments cells were initially insulin and serum starved
for 4 h and then treated with either 10 or 100nM of insulin for 15min.
No commonly misidentified cell lines were used in this study. All kid-
ney cell lines were generated by us as outlined in references
included20–23.

Generation of stable cell lines. IR-overexpressing cell lines were
generated by transduction with human IR-containing lentivirus
and blasticidin selection as previously described17. Briefly, lenti-
viral particles were made by subcloning human IR (NM_000208.2)
into pLenti-TetCMV(IR)-Rsv(RFP-Bsd) vectors (Gentarget, San
Diego, CA, USA), which were transfected into Lenti-X 293T cells
(Clontech/Takara Bio Europe SAS, Saint-Germain-en-Laye, France),
alongside pMD.2G (Addgene no. 12259) and psPAX2 (Addgene no.
12260), both gifts from D. Trono (École polytechnique fédérale de
Lausanne). NRBF2-knockdown cell lines were also generated using
lentiviral vectors expressing shRNA targeting human NRBF2 (or

scramble control) and a puromycin selection (designed and pur-
chased with ‘VectorBuilder’).

Glucose transport
Cellular glucose uptake was measured as previously described17.
Briefly, cells were serum-starved before incubation with a modified
Krebs Ringer Phosphate (KRP) solution for 15min at 37 °C. After
appropriate stimulation, [3H]2-deoxy-d-glucose (Perkin Elmer, Cov-
entry, UK) was added at 37 kBq/ml for 5min. Solubilised cell suspen-
sions were collected, and radioactivity was measured in
disintegrations per minute (dpm) using a multi-purpose scintillator
counter (Beckman Coulter, High Wycombe, UK). Each condition was
performed with at least two technical replicates. Data are presented as
mean± SEM. One-way ANOVA with Tukey’s multiple comparison test
and t-tests for statistical significance were performed using GraphPad
Prism v9 (GraphPad Software, CA, USA).

Western blotting
Briefly, total protein lysates were extracted using RIPA lysis buffer
(Sigma Aldrich), resolved using SDS–PAGE and blotted onto PVDF
membranes. Membranes were incubated in primary antibodies over-
night at 4 °C, before washing and incubation with the appropriate
horseradish peroxidase (HRP)-conjugated secondary antibody (Sigma
Aldrich) at a 1:10,000 dilution. Primary antibodies were diluted 1:1000
in BSA and used to target total Akt, phospho-Akt (S473), phospho-IGF-I
Receptor β (Tyr1135/1136)/insulin receptor β (Tyr1150/1151), total
insulin receptor β and NDUFB8 (Cell Signalling Technologies). ATP5A,
UQCRC2, SDHB andCOXII were targeted using a total humanOXPHOS
antibody cocktail (Abcam). Immunoreactive bands were visualised
using Clarity ECL Western Blotting Substrate (Bio-Rad, Hemel Hemp-
stead, UK) on an AI600 imager (GE Healthcare, Amersham, UK) and
quantified using ImageJ (NIH, https://imagej.nih.gov/ij/). Quantified
western blotting data are presented as mean ± SEM. One-way ANOVA
with Tukey’s multiple comparison test and t-tests for statistical sig-
nificance were performed using GraphPad Prism v9 (GraphPad Soft-
ware, CA, USA).

RNA extraction and real-time qRT-PCR
TotalRNAwas isolated using anRNeasyMini Kit (QIAGEN,Germany) as
per the manufacturer’s recommendations. cDNA was synthesised
using a high-capacity RNA-cDNA kit (Thermo Fisher Scientific, UK).
Quantitative RT-PCRwas performed using SYBR green (SigmaAldrich)
in a StepOnePlus system (ThermoFisher Scientific) for human NRBF2
(forward: CAGACGAGCAGACCGTTTATT, reverse: TGCTGGGCTTTCA
ATCTTTGTT) ATP5A (forward: AACCAGCATCACACACACAC, reverse:
CACCAGGATAGGACGAGGAC), UQCRC2 (forward: TTTTGTCTGCTT
CCTGTGCC, reverse: TCGGCAGTGTGTCAAAAGTG), SDHB (forward:
AGAAACTGGACGGGCTCTAC, reverse: TGTGGCAGCGGTATAGAGAG),
COXII (forward: ACCGTCTGAACTATCCTGCC, reverse: AGATTAG
TCCGCCGTAGTCG), NDUFB8 (forward: TGCTTAGCCCCATTTCCTGA,
reverse: AAGTAGGGGTGGAGAAGTGC); all normalised to B-ACTIN
(forward: CACCATTGGCAATGAGCGGTTC, reverse: TAGGTCTTTGC
GGATGTCCACGT).

RNA sequencing
Libraries were prepared and sequenced at Abbvie Research Centre
(Cambridge, MA, USA). cDNA libraries were prepared using the Clo-
netech SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing. All
samples had RIN > 8, measured using the Agilent TapeStation.
Sequencing was performed on the Illumina HiSeq 4000 platform
(Illumina Inc.) and produced paired-end 75 bp reads, with replicates
appropriately partitioned into the two batches and containing a
common reference sample. The reads were aligned to the GRCh38
human reference genome using the STAR v2.6.0.c aligner on default
settings69. The quality of the RNA-Seq samples was verified with
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FASTQC version 0.12.170. Read counts were quantified with htseq-
count 0.9.171.

Genes with more than 1 cpm (count per million) from at least one
library were considered for the statistical analysis. The read count data
were normalised with the TMM (trimmed mean of M-values) method
from the edgeR R package (v3.22.5)72 and transformed to log2 cpm
with the voom method from the limma R package (v3.38.3)73. The
principal component analysis was done in R (v3.5.1).

Different linear models were built on the transformed data on
each independent cell type on the two conditions with five replicates,
each of ‘Basal’ and ‘Insulin Resistant’ with the overexpression of the
human insulin receptor (IR). Differential expression analysis was then
performed on each model, with the contrast representing the differ-
ence between ‘Insulin Resistant’ and ‘Basal’ using limma. p-values
produced from the differential analysis were adjusted for the four cell
types using the Benjamini and Hochberg correction74, and adjusted p-
values (FDR) < 0.05 were considered significant unless otherwise sta-
ted. For the identification of cell-line-specific changes, we used data
that were individually normalised and analysed for each cell line to
capture information from genes that displayed cell-line-specific
expression patterns. Nominal p-values were used to investigate the
overlap between regulated genes. Cell-line-specific regulated genes
were further filtered such that in addition to p >0.05 in the other cell
lines, Log2FC <0.1 for upregulated and >−0.1 for downregulated
transcripts/ proteins were employed.

Tandem mass tag (TMT)-mass spectrometry (MS) processing
and analysis
Total cell protein was extracted in RIPA lysis buffer (Thermo Fisher)
and aliquots of each sample were digested with trypsin (2.5 µg per
100 µg protein; 37 °C, overnight), labelled with Tandem Mass Tag
(TMT) ten plex reagents according to the manufacturer’s protocol
(Thermo Fisher Scientific, Loughborough, LE11 5RG, UK). Labelled
samples were pooled and 50μg was desalted using a SepPak cartridge
(Waters, Milford, MA, USA). Eluate from the SepPak cartridge was
evaporated to dryness and resuspended in 20mM ammonium
hydroxide, pH 10, prior to fractionation by high pH reversed-phase
chromatography using an Ultimate 3000 liquid chromatography sys-
tem (Thermo Fisher Scientific). The sample was loaded onto an
XBridgeBEHC18Column (130 Å, 3.5 µm, 2.1mm× 150mm,Waters, UK)
and peptides eluted with an increasing gradient (0–95%) of 20mM
ammonium hydroxide in acetonitrile, pH 10, over 60min. The result-
ing fractionswereevaporated todryness and resuspended in 1% formic
acid prior to analysis by nano-LC MSMS using an Orbitrap Fusion
Lumos mass spectrometer (Thermo Scientific). High pH RP fractions
were further fractionated using an Ultimate 3000 nano-LC system and
spectra were acquired using an Orbitrap Fusion Lumos mass spectro-
meter controlled by Xcalibur 3.0 software (Thermo Scientific) and
operated in data-dependent acquisition mode using an SPS-MS3
workflow. Replicates were appropriately partitioned into each batch
with additional inclusion of a common reference sample, to allow
batch correction. Raw data files for the total proteome analyses were
processed and quantified using Proteome Discoverer software v2.1
(Thermo Scientific) and searched against the UniProt human database
(September 2018: 152,927 entries) using the SEQUEST algorithm. The
reversedatabase searchoptionwas enabled, and all datawasfiltered to
satisfy a false discovery rate (FDR) of 5%.

The data output from the Proteome Discoverer 2.1 analysis was
further handled, processed and analysed using Microsoft Office Excel,
GraphPad Prism and R. Normalisation and differential analysis were
performed in R in the same manner as RNA-seq data.

Consensus OPLS
Consensus orthogonal partial least-squares discriminant analysis
(OPLS-DA)modelwas computedwith theMATLAB9 environmentwith

combinations of toolboxes and in-house functions that are available at
https://gitlab.unige.ch/Julien.Boccard/consensusopls. Modified RV-
coefficients were computed with the publicly available MATLAB
m-file75. KOPLS-DA was assessed with routines implemented in the
KOPLS open source package76. Consensus OPLS modelling was per-
formed on proteomics and RNAseq data tables, which were all auto-
scaled prior to the analysis for each cell type independently. The
Consensus OPLS model distinguishes variations of data that are cor-
related to Y response (basal vs. insulin resistant) and those that are
orthogonal to Y response. This eases the biological interpretation of
results and enables the link between the variation of variables and the
variation of the outcome while removing information coming from
other sources of variation. Themodels were computed with two latent
variables, 1 predictive and 1 orthogonal. The quality of the model was
assessed by R2 andQ2 values, which define the portion of data variance
explained by the model and the predictive ability of the model,
respectively. The Q2 value was computed by a K-fold cross-validation
(K = 7). To ensure the validity of the model, a series of 1000 permu-
tation tests were carried out by mixing randomly the original Y
response (basal vs insulin resistant). A t-test was performed to ensure
that the true model Q2 value was clearly distinguished and statistically
different from the random model distribution. The variable relevance
to discriminate between the two conditions was evaluated using the
variable importance in projection (VIP) parameter, which reflects the
importance of variables both with respect to the response and to the
projection quality.

Enrichment analysis
Over-representation analysis to identify shared transcription factors
was performed using the TRANSFAC database v7.4 in WebGestalt
201977. The Gene Ontology term enrichment analysis was performed
with GSEA26 using the R package clusterProfiler (v3.14.0)78. The GO
annotation (biological process (BP), molecular function (MF) and cell
compartment (CC)) for genes and proteins mapped to genes was
obtained from theMolecular Signatures Database (MSigDB v7.1)79. The
signal2noise ratio26 was used for feature rankings in each omics from
individual DE analysis in each cell type. The loadings for genes and
proteins obtained from the Consensus OPLS multiblock model were
used for feature rankings in each omics from the data integration in
each cell type. The enriched GO terms were filtered for significance in
at least one cell type (nominal p-value < 0.05 and q-value < 0.1 from
both omics data either from individual DE or consensus OPLS), hier-
archically clustered with the semantic similarity between GO terms
based on the graph structure of GO (Wang measure) using the R
package GOSemSim (v2.12.1)27 and then displayed as a heatmap of
normalised enrichment scores (NES) with the R package Complex-
Heatmap (v2.2.0)80. Additional visualisation for consistently regulated
pathways and respective core enrichment genes was performed in
Cytoscape81 using the EnrichmentMap module82. To assess whether
similar pathway activation was evident in human DKD, we evaluated
the expression of the core-enrichment genes for select clusters of
regulated pathways (identified in insulin resistant cell lines), in the
human kidney biopsy data outlined below. An average of the Z-scores
was calculated for each of the core-enrichment genes to compare
regulation in kidneys from early- or late-stage DKD with healthy living
donors.

Human cohorts
Insulin resistance-associated transcripts identified from cell-line stu-
dies were analysed in human kidneys using gene expression data from
an American Indian type 2 diabetes cohort (n = 69 glomerular and
n = 47 tubular samples)28,83, and European Renal cDNA
Bank–Kroener–Fresenius biopsy bank (ERCB, n = 12 glomerular and
n = 17 tubular samples)25,84 (Supplementary Data 3). We further used
data from the ‘Nephroseq’ database (www.nephroseq.org, University
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of Michigan, Ann Arbor, MI, USA) to correlate NRBF2 expression with
eGFR in late-stage DKD, using the ‘Ju CKD’ dataset85. Samples from the
American Indian type 2 diabetes cohort consist of protocol human
kidney biopsies from individuals with type 2 diabetes from the Gila
River American Indian Community. The study participants were
enroled in a randomised, double-blinded, placebo-controlled inter-
ventional clinical trial funded by the National Institute of Diabetes and
Digestive andKidneyDiseases (NIDDK)83. All biopsieswere stratifiedby
the reference pathologist of the ERCB according to their histological
diagnoses. Histology reports, clinical data, and gene expression
information were stored in a de-identified manner. Both the American
Indian type 2 diabetes cohort and ERCB biopsies were processed
similarly; glomerular and tubular compartments were separated using
microdissection and Affymetrix-based gene expression profiling was
performed using Affymetrix GeneChip Human Genome U133A 2.0 and
U133 Plus 2.0 Array (Affymetrix, Santa Clara, CA, USA), as previously
reported25,84. Gene expression changes in DKD samples were com-
pared to similarly processed healthy control biopsies using the sig-
nificance analysis of microarrays (SAM) method implemented in the
TIGR MultiExperiment Viewer application. Genes regulated with a q-
value (false discovery rate) < 0.05 were considered significant. Spear-
man correlation was applied to evaluate the association between
expression levels and phenotypes of interest.

Analysis of single-cell RNA sequencing data
Cell-line-specific changes to insulin resistance were further evaluated
in human single-cell RNA sequencing (scRNA-Seq) data from DKD,
using data from 18 living kidney transplant donors (LD), 44 individuals
with early DKD from an American Indian type 2 diabetes cohort28 and
10 individuals with DKD downloaded from the Kidney Precision Med-
icine Project (KPMP, SupplementaryData 8)86 tissue atlas (https://atlas.
kpmp.org/repository). Details of tissue processing, single-cell isolation
and scRNA-Seq are described in previous publications86,87 and are
according to the KPMP scRNA-Seq protocol (https://www.protocols.
io/view/single-cell-rna-sequencing-scrna-seq-7dthi6n). In brief, kidney
biopsies procured in CryoStor® were dissociated into a single-cell
solution by enzymatic digestion for 12min at 37 °C.Over 20,000viable
cells were run on the droplet-based 10× Genomics platform applying
the Chromium Single Cell 3’chemistry (v3.1). After cDNA library pre-
paration, sequencing was executed on an Illumina NovaSeq 6000
platform with more than 200 million reads (paired-end 2 × 151 bases)
per sample. Barcode processing, and gene expression quantifications
wereperformedwith the 10XCellRanger v3pipeline using theGRCh38
(hg38) reference genome. The cell ranger count matrix files are then
processed using SoupX (v1.5.0) to remove the ambient mRNA
contamination88. Only cells that passed the threshold of >500 and
<5000geneswere used for further analysis using the SeuratRpackage.
Seurat processing steps include normalisation, scaling, dimensionality
reduction (principal component analysis and uniform manifold
approximation and projection), harmony integration and unsu-
pervised clustering. Cell-type expression of individual genes inDKDvs.
LD was visualised using the dotplot tools implemented in Seurat and
cellXgene.

Measurement of cellular energetics (Seahorse XF)
A Seahorse XFe96 Analyser (Agilent Technologies) was used to assess
metabolic activity through oxygen consumption rate (OCR) and
extracellular acidification rate (ECAR). Cell densities and chemical
working concentrations were optimised prior to the experiments. All
cells were seeded in an XF 96-well microplate at densities of 30,000
cells/well for podocytes and mesangial cells, 25,000 cells/well for
proximal tubular cells and 40,000 cells/well for glomerular endothe-
lial cells, incubated at 33 °C overnight, followed by incubation at 37 °C
for 10 days. The sensor cartridge was hydrated overnight at 37 °C and
cells were equilibrated in assay buffer at 37 °C in a non-CO2 incubator

for 1 h prior to the assay. Three baseline measurements were taken,
followed by sequential injection of oligomycin (1.5 µM), FCCP (1 µM),
and antimycinAplus rotenone (0.5 µM)and the calculation ofOCR and
ECAR using Agilent Wave software version 2.6.3. For data normal-
isation, cells were subsequently stained with Hoechst, imaged and
counted using an INCell analyser89, and BCA assays were performed.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The codes are available at https://github.com/sib-swiss/BEAt_DKD. The
transcriptomic and proteomic datasets from insulin-sensitive and
insulin-resistant cell lines are submitted and will be made publicly
available to NCBI under the BioProject PRJNA905899. Additional data
used in this manuscript are accessible at https://epdc.sib.swiss (Eur-
opean Platform for Diabetes and Complications) and https://atlas.
kpmp.org/repository (Kidney Precision Medicine Project). All partici-
pants from the human cohort provided informed consent. Due to
privacy protection concerns, individual-level genotype, and gene
expression data from the early DKD study cannot be made publicly
available. Other available sourcedata are provided as a SourceDatafile
with this paper. Source data are provided with this paper.

Code availability
Code used in the analysis and presentation are available at https://
github.com/sib-swiss/BEAt_DKD.
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